
1
American Institute of Aeronautics and Astronautics

AIAA-99-4456

PRACTICAL ISSUES IN ESTIMATING FAULT CONTENT AND LOCATION IN
SOFTWARE SYSTEMS

Allen P. Nikora
Jet Propulsion Laboratory

California Institute of
Technology

Pasadena, CA 91109-8099
Allen.P.Nikora@jpl.nasa.gov

Norman F. Schneidewind
Code IS/Ss

Naval Postgraduate School
Monterey, CA 93943

nschneid@nps.navy.mil

John C. Munson
Computer Science

Department
University of Idaho

Moscow, ID 83844-1010
jmunson@cs.uidaho.edu

ABSTRACT

Over the past several years, techniques have been
developed to discriminate between fault-prone software
modules and those that are not, and to estimate a soft-
ware system’s residual fault content. These techniques
can be applied during the stages of a development effort
prior to test, thereby giving software managers greater
visibility into the systems being developed and allow-
ing them to exert more accurate and precise control into
their quality. There are practical issues involved in
implementing these measurement techniques in a pro-
duction development environment. In this paper, we
describe measurement techniques being implemented
on a development effort at the Jet Propulsion Labora-
tory, identify implementation issues, and describe pro-
posed resolutions to these issues.

INTRODUCTION

Over the past several years, techniques have been
developed to use measurements of a software system’s
structure to discriminate between fault-prone software
modules and those that are not, and to estimate a soft-
ware system’s residual fault content.1, 2, 3, 4, 5 These tech-
niques can be applied during the earlier stages of a de-
velopment effort prior to test, thereby giving software
managers greater visibility into their projects and al-
lowing them to exert more accurate and precise control
over the systems for which they are responsible.

Boolean discriminant functions (BDFs) and meas-

ures of Relative Critical Value Deviation (RCVD) can
be used in classifying the quality of software during the
quality control and prediction process.4, 5 Using failure
data from the Space Transportation System Primary
Avionics Software System (STS PASS), these functions
have been shown to provide good accuracy (i.e., 3%
error) for classifying low quality software. This is true
because the BDFs consist of more than just a set of
metrics. They include additional information for dis-
criminating quality: critical values. To form BDFs,
nonparametric statistical methods are used to:
1. identify a set of candidate metrics for further

analysis.
2. identify the critical values of the metrics. This

computation is based on the Kolmogorov-Smirnov
(K-S) test.

3. find the optimal BDF of metrics and critical values
based on the ability of the BDF to satisfy both sta-
tistical (i.e., ability to classify quality) and applica-
tion (i.e., quality achieved versus the cost to
achieve it) criteria.

Detailed maps of a software system’s residual fault
content at any point in time can be constructed from its
structural evolutionary and failure histories. We have
shown that it is possible to identify a relationship be-
tween the measured amount of change between two
successive versions of a software module and the num-
ber of faults inserted into that module, thereby provid-
ing an estimate of the rate of fault insertion.2, 3, 6 This
lets us estimate the number of faults inserted into each
module of the system at any point during its develop-
ment. The number of residual faults in each module is
computed by subtracting the number of faults known to
have been repaired in a module (taken from the sys-
tem’s failure history) from the estimated number of
faults inserted into that system. Software managers can
use this information to more accurately prioritize those
modules to which fault identification and repair re-

Copyright 1999 by the American Institute of Aeronau-
tics and Astronautics, Inc. The U.S. Government has a
royalty-free license to exercise all rights under the
copyright claimed herein for governmental purposes.
All other rights are reserved by the copyright owner.

2
American Institute of Aeronautics and Astronautics

sources should be applied, thereby making the most
effective use of limited resources.

Although our previous work has involved only the
implementation phase, these methods can make use of
software structural methods available prior to imple-
mentation, thereby allowing faulty modules to be iden-
tified early development phases. This is especially ap-
pealing since it has been repeatedly demonstrated that
removing faults during the latter phases of a software
development effort can be one or two orders of magni-
tudes more costly than removing those same faults
during earlier development phases.7 There are practical
issues that must be addressed prior to implementing
these methods on a software development effort. These
involve:
1. Measuring workproducts such as specifications and

designs, which are often expressed in a mixture of
formal and informal notations, and may not be eas-
ily measurable.

2. Devising accurate, consistent, and practical meth-
ods of tracing discovered faults back to the point at
which they originally inserted into the system.
This is required in order to develop models relating
the fault insertion rate to measurements of a sys-
tem’s structural evolution.

To resolve the first issue, we are currently investi-
gating methods of translating the outputs of some of the
more popular tools for diagramatically representing a
system’s behavior (i.e., statecharts) into forms that can
easily be measured. With respect to the second issue,
we are refining an ad-hoc taxonomy developed as part
of our initial work and determining how it might be
formalized. In the remainder of this paper, we briefly
discuss the management techniques we are working to
implement on the Mission Data System (MDS), a soft-
ware development project at JPL which will produce
the next generation of planetary exploration flight and
ground software, discuss in more detail the practical
issues associated with these techniques, and describe
methods being considered for their resolution.

IDENTIFYING FAULT-PRONE
SOFTWARE COMPONENTS

Measurements of a software system’s structure can
be used to discriminate between fault-prone modules
and those that are not fault prone. During development,
structural measurements of the system are taken and
used to construct BDFs and the RCVD metrics. A BDF
is a Boolean function consisting of AND and OR op-
erators, module metric values, and metric critical values
that is used to classify the quality of software.5 A met-
ric critical value is a value in the range of the metric,

estimated by using the inverse of the Kolmogorov-
Smirnov distance that provides a threshold between
two levels (e.g., high and low) of the quality of the
software.

In forming BDFs, it is important to perform a mar-
ginal analysis when making a decision about how many
metrics to include. If many metrics are added at once to
the set, the contribution of individual metrics is ob-
scured. Also, the marginal analysis provides an effec-
tive rule for deciding when to stop adding metrics. If
certain metrics are dominant in their effects on classi-
fying quality, additional metrics are not needed to accu-
rately classify quality. Related to this property of
dominance is the property of concordance, which is the
degree to which a set of metrics produces the same re-
sult in classifying software quality. A high value of
concordance implies that additional metrics will not
make a significant contribution to accurately classifying
quality; hence, these metrics are redundant.

Note that the BDF provides only an accept/reject
decision on a component’s quality. The RCVD, which
measures the extent to which a measurement deviates
from its critical value, further indicates the extent to
which a component’s quality is above or below an ac-
ceptable level.

Taking the structural measurements necessary to
form BDFs and compute the RCVD is a straightforward
matter. Commercial measurement tools are readily
available, and these can be easily integrated into mod-
ern configuration management tools, such as CCC Har-
vest or ClearCase, to make the measurements without
requiring any extra effort on the part of the developers.
In selecting the measurement tool and setting up the
measurement process, the following decisions need to
be made:

• At what point are the measurements to be
made (e.g., at the completion of a specified
build, at regular intervals)?

• What structural measurements will be taken?
We have developed guideline for selecting ap-
propriate measurements.5 Whatever tool is
selected should clearly identify how the meas-
urements are taken.

The more difficult aspect is counting the number of
problem reports associated with each component so that
critical values for the BDFs may be computed. Our
experience indicates that the most effective way of
gathering this information is to choose a problem re-
porting system that integrates with the configuration
management system. Links are established between
each problem report and the components that are modi-
fied in response to that problem report. Relating prob-
lem reports to software components then becomes a
simple matter of querying the problem report database.

3
American Institute of Aeronautics and Astronautics

We are currently working to implement such a meas-
urement system for the MDS, the flight and ground
software being developed at JPL for the next generation
of planetary exploration spacecraft.

In principal, BDFs and RCVD can be extended to
development activities prior to implementation. If
structural information about specification or design
artifacts is available, and if technical reviews such as
Fagan inspections are regularly held to identify faults in
the workproducts, then BDFs can be formed and RCVD
values computed.8 While there is an abundance of tools
for measuring source code during the implementation
phase, we have found it significantly more difficult to
measure artifacts produced in earlier development
phases. In many development efforts, we have ob-
served that the syntax of the notations used in produc-
ing designs and specifications is not as well-defined as
that of the source code, making it difficult to define a
complete or consistent set of measurements. In many
cases, designs and specifications are specified in a
mixture of natural language and other informal or semi-
formal notations. This compounds the problem by in-
troducing the possibility of incompatibilities between
the notations.

To resolve the measurement problem, we are
working in cooperation with the MDS to devise meth-
ods of measuring UML diagrams. Current MDS plans
call for producing specifications and designs in the
form of UML diagrams such as use cases, scenarios,
class diagrams, and statecharts. Unfortunately, cur-
rently available UML tools do not provide structural
measurements of the models they produce. However,
there are ways of translating some of the output of these
tools into forms that can be easily measured. For in-
stance, the MOCES tool can be used to translate suita-
bly-constrained statecharts produced by Statemate into
the Promela modeling language used by the Spin
model-checker.9, 10 It is then a relatively straightforward
matter to design and implement a structural analyzer to
measure the statechart’s Promela equivalent. We are
investigating the practicality of doing this type of
measurement in the MDS environment.

ESTIMATING FAULT INSERTION
RATES AND FAULT CONTENT

Our previous work indicates that there is a strong
relationship between measurements of a system’s
structural evolution and the rate at which faults are in-
serted during development.3, 6 During implementation,
these measurements can be taken at the level of indi-
vidual modules (i.e., methods, functions). These meas-
urements act as a fault surrogate – they are strongly
related to the system’s fault content, and they aggregate

in the same manner as fault counts of individual mod-
ules aggregate into a total fault count for the system.

Using only measures of structural evolution, it is
possible to estimate the proportional fault burden of a
module at any point during its development. If the total
amount of change that module i has undergone with
respect to a baseline B is given by xi

B, then its propor-
tional fault burden di

B is given by:

∑
=

=
N

i

B

i

B

i

B

i xxd
1

(1)

where N is the number of modules comprising the sys-
tem. This quantity can be compared to each module’s
proportion of faults discovered during test, gi

B. Com-
parisons of di

B and gi

B can be made to identify those
modules to which additional fault identification re-
sources should be allocated: If di

B is greater than gi

B ,
then additional resources should be allocated to module
i. Conversely, if gi

B is greater than di

B , then too many
resources have already been allocated to module i, and
no further fault identification effort is required until di

B

becomes equal or greater to di

B.
Once repaired, faults can be identified and traced

back to the point at which they were first inserted into
the system. This information can be used to construct a
regression model relating the number of faults inserted
per unit of structural change.6 The number of faults
inserted into the system at the module level can then be
estimated, as can the residual fault content of each
module. The modules with the largest estimated resid-
ual fault content can be identified, and allocated fault
identification and repair resources proportional to their
residual fault content.

The structural evolution of the software at the
module level can be measured transparently to the de-
velopers. Modern configuration management tools
make it straightforward matter to make structural meas-
urements as part of checking a change package into the
repository. These tools can be set up to start the meas-
urement tool each time a developer checks a source file
back into the repository, thereby making it unnecessary
for the developer to perform any extra work related to
measurement. The measurement history is automati-
cally recorded, ready for the use by the test and quality
assurance staff. We are currently working with MDS to
integrate a measurement tool we have developed for
this purpose, EMA, with the MDS configuration man-
agement system.

Tracing faults back to their point of origin is
somewhat more complicated. Ideally, a problem report
would identify each fault repaired in response to the
reported failure, but we have found that this is not done
for almost of the software development efforts we have
studied. However, most development efforts require

4
American Institute of Aeronautics and Astronautics

that the source code files that were changed in response
to a reported failure be identified. It therefore becomes
necessary to examine the changes made in response to a
reported failure to identify the faults that have been
repaired. We have developed a set of fault counting
and identification rules to help analysts in this activity.3

Once the faults have been identified, it is necessary to
find the point at which they were first inserted into the
source code, so that the relationship between the
amount of structural change made to the system and the
number of faults inserted can be established. This
means searching all previous versions of a module prior
to the point at which the fault was corrected. Unfortu-
nately, this is largely a manual technique at this point.
As part of our future work, we hope to formalize the
fault counting and identification rules we have devel-
oped. We hope to develop a search tool which analysts
could use to automate searches of all previous revi-
sions of a module.

In identifying and counting faults, it is necessary to
separate changes due to fault repair from those made
due to change requests. We are developing a problem
resolution process for the MDS that would give priority
to fault repair. Before modifying or enhancing a com-
ponent, developers should first repair known faults in a
component and submit the repaired component to the
repository. Developers would then check out the re-
paired component to which enhancements or other
modifications could be made. In addition to reducing a
source of noise in the measurements, it is a matter of
good engineering practice to repair a component con-
taining known faults before attempting to enhance it.

MEASURING TEST EFFICIENCY

Our recent work has also shown that test efficiency
can be measured by comparing an ideal execution pro-
file to the actual profile observed while executing the
software during test.1, 2, 6 The ideal execution profile is
constructed from a detailed history of the software’s
structural evolution during its development. Since
these measurements have been shown to be strongly
related to the rate at which faults are inserted into the
software system during its development, each module
should then be tested according to the amount of
change it has undergone since the last time it was
tested. Suppose that a system about to enter test con-
sists of a set of modules A, and that the cumulative
amount of change that has been made to all the modules
in A since the last round of testing is X. If a particular
module a has incurred a total amount of change x since
the last round of testing occurred, the proportion of time
that should be spent executing module a is x/X. This
ideal profile can then be quantitatively compared with

the profile observed during test. The testing staff can
then:
• Calculate a numerical value for the effectiveness of

the test procedure(s).
• Identify those modules that were insufficiently

tested, and the extent to which they were insuffi-
ciently tested.

• Identify those modules in which too much execu-
tion time was spent during test, and by how much
the ideal execution time was exceeded.
The structural evolution of the source code is

measured as described above. Measuring the execution
profile may be somewhat more invasive, in that the
software needs to be monitored during execution. The
ideal way of accomplishing this is to design the neces-
sary instrumentation into the software. However, this
requires some effort to design and implement the soft-
ware. Traditionally, software development efforts have
not seen any benefit to devoting scarce resources to a
capability that is not seen to directly affect the system’s
functionality. Another way of accomplishing this is to
compile the software with instrumentation that will
record the transitions from module to module during
execution. Comparatively little effort is required to link
the instrumentation package into the software system.
However, the instrumentation may alter the software’s
behavior. This is particularly true in real time systems,
for which changes in timing relationships may alter the
system’s behavior in unpredictable ways.

A third way of observing a system’s execution pro-
file is to build the necessary instrumentation into the
testbed on which the system is run during the various
testing phases. This is attractive for the following rea-
sons:
• There is no need to link an instrumentation pack-

age into the software. The system’s timing rela-
tionships will not be affected.

• Depending on the nature of the testbed, it may be
possible to capture more extensive information
about the system’s behavior during execution than
would be possible with either of the other two
methods. There is a limit to how much information
may be extracted from a system using built-in or
linked-in instrumentation before its behavior starts
to be adversely affected. However, if the instru-
mentation is implemented on the testbed, it is the
testbed’s rather than the system’s performance that
is affected. Even if the instrumentation places a
relatively high load on the testbed, the system un-
der test will behave in the same fashion as if the in-
strumentation placed a small load on the testbed.

• If the testbed is designed to be used for multiple
missions, the instrumentation becomes part of the
multimission capability. It is easier to use a capa-

5
American Institute of Aeronautics and Astronautics

bility that is already available rather than rebuild-
ing it for each new mission.

We are working to implement this trace capability
on the bit-level simulator that will be produced as part
of the test environment for the MDS. We believe that
only the following requirements need to be levied on
the simulator to implement this capability:
• During execution, the simulator shall log to a user-

specified file the following information each time
control is passed from module to module:
• The address to which control is transferred.
• The time at which control is transferred.

NOTE: Time may be expressed in terms other
than seconds or fractions of seconds – it would
be perfectly satisfactory to express elapsed
time during a test as the cumulative number of
(simulated) CPU clock cycles, for instance.

• Users shall be able to select whether or not they
want to log an execution profile prior to starting a
test.

Of course, there will be constraints on the size of
the log file that can be produced, which will require
decisions on the following matters:
• Should the user be allowed to specify the maxi-

mum size of the log file prior to a test run, and how
should that size be specified (e.g., size in bytes,
size in number of transitions, amount of execution
time to be recorded)? What should be the simula-
tor’s response if the desired file size is too large?

• Should there be manual capabilities to start and
stop logging?

• Once the log file becomes full, should logging
stop, or continue at the beginning of the file?
Should the user be given a choice?

There will also be issues relating to the perform-
ance of the simulator that will need to be addressed.
Although a large instrumentation load on the simulator
will not affect the behavior of the system under test, it
may affect the amount of time that it takes to execute a
test. In a real development effort, there will always be
pressure to adhere to the schedule, and if the instru-
mentation produces delays in completing tests, there
will be pressure to avoid using it.

Irrespective of the programming language chosen,
we believe that this will be a relatively simple capabil-
ity to implement in a bit-level simulator. This is be-
cause we will be working at low level of abstraction by
trapping the small, well-defined set of instruction(s)
that are used to transfer control between modules,
rather than attempting to identify such transfers at a
higher level of abstraction.

Finally, note that none of the analysis capabilities
are to be implemented in the simulator. If the log file is
available to members of the test and quality assurance
staff, analysis of the results can be done in non-real
time.

ESTIMATING RISK OF EXPOSURE TO
RESIDUAL FAULTS

Once estimates of residual fault content have been
made at the module level, this information can be com-
bined with dynamic information obtained during test
and fielded use to estimate the system’s risk of expo-
sure to residual faults.3 The practical issues involved
here are the same as those of computing test efficiency,
namely obtaining measurements of the system’s struc-
tural evolution and its execution profile during test and
fielded use. As previously noted, measuring the sys-
tem’s structural evolution can be done as part of the
configuration management process, transparently to the
development team. For MDS, we intend to build into
the bit-level simulator on which the flight components
will be tested the capability of measuring and recording
the execution profile of the system under test.

MEASURING REQUIREMENTS RISK

One of the software maintenance problems of any
development organization is to evaluate the risk of im-
plementing requirements changes. These changes can
affect the reliability and maintainability of the software.
As part of our work on MDS, we are determining the
applicability of the risk assessment used on the STS
flight software. To assess the risk of change, the soft-
ware development contractor uses a number of risk
factors, which are described below. The risk factors
were identified by agreement between NASA and the
development contractor based on assumptions about the
risk involved in making changes to the software. This
formal process is called a risk assessment. No require-
ments change is approved by the change control board
without an accompanying risk assessment. During risk
assessment, the development contractor attempts to
answer such questions as: “Is this change highly com-
plex relative to other software changes that have been
made on the Shuttle?” If this is the case, a high-risk
value would be assigned for the complexity criterion.
To date this qualitative risk assessment has proven use-
ful for identifying possible risky requirements changes
or, conversely, providing assurance that there are no
unacceptable risks in making a change. However, there
has been no quantitative evaluation to determine
whether, for example, high risk factor software was
really less reliable and maintainable than low risk factor

6
American Institute of Aeronautics and Astronautics

software. In addition, there is no model for predicting
the reliability and maintainability of the software, if the
change is implemented. The intent of our work with
MDS is to address both of these issues.

We had considered using requirements attributes
like completeness, consistency, correctness, etc., as risk
factors.11 While these are useful generic concepts, they
are difficult to quantify. Although some of the follow-
ing risk factors also have qualitative values assigned,
there are a number of quantitative factors, and many of
the factors deal with the execution behavior of the
software (i.e., reliability), which is our research interest.

The following are the definitions of the risk factors,
where we have placed the factors into categories and
have provided our interpretation of the question the
factor is designed to answer. In addition, we added the
risk factor requirements specifications techniques be-
cause we feel that this one could represent the highest
reliability risk of all the factors if a technique leads to
misunderstanding of the intent of the requirements. If
the answer to a yes/no question is “yes”, it means this is
a high-risk change with respect to the given factor. If
the answer to a question that requires an estimate is an
anomalous value, it means this is a high-risk change
with respect to the given factor.

Complexity Factors

• Qualitative assessment of complexity of
change (e.g., very complex)
- Is this change highly complex relative to
other software changes that have been made
on the Shuttle?

• Number of modifications or iterations on the
proposed change
- How many times must the change be modi-
fied or presented to the Change Control Board
(CCB) before it is approved?

Size Factors

• Number of lines of code affected by the
change
- How many lines of code must be changed to
implement the change?

• Size of data and code areas affected by the
change
- How many bytes of existing data and code
are affected by the change?

Criticality of Change Factors

• Whether the software change is on a nominal
or off-nominal program path (i.e., exception
condition)
- Will a change to an off-nominal program
path affect the reliability of the software?

• Operational phases affected (e.g., ascent, orbit,
and landing)
- Will a change to a critical phase of the mis-
sion (e.g., ascent and landing) affect the reli-
ability of the software?

Locality of Change Factors

• The area of the program affected (i.e., critical
area such as code for a mission abort se-
quence)
- Will the change affect an area of the code
that is critical to mission success?

• Recent changes to the code in the area affected
by the requirements change
- Will successive changes to the code in one
area lead to non-maintainable code?

• New or existing code that is affected
- Will a change to new code (i.e., a change on
top of a change) lead to non-maintainable
code?

• New or existing code that is affected
- Will the change be on a path where only a
small number of system or hardware failures
would have to occur before the changed code
is executed?

Requirements Issues and Function Factors

• Number and types of other requirements af-
fected by the given requirement change (re-
quirements issues)
- Are there other requirements that are going
to be affected by this change? If so, these re-
quirements will have to be resolved before im-
plementing the given requirement.

• Possible conflicts among requirements
changes (requirements issues)
- Will this change conflict with other require-
ments changes (e.g., lead to conflicting opera-
tional scenarios)

• Number of principal software functions af-
fected by the change
- How many major software functions will
have to be changed to make the given change?

Performance Factors

7
American Institute of Aeronautics and Astronautics

• Amount of memory required to implement the
change
- Will the change use memory to the extent that
other functions will be not have sufficient
memory to operate effectively?

• Effect on CPU performance
- Will the change use CPU cycles to the extent
that other functions will not have sufficient
CPU capacity to operate effectively?

Personnel Resources Factors

• Number of inspections required to approve the
change.

• Manpower requirements required to imple-
ment the change
- Will the manpower required to implement the
software change be significant?

 Manpower required to verify and validate the
correctness of the change

- Will the manpower required to verify and
validate the software change be significant?

Tools Factor

• Any software tools creation or modification
required to implement the change
- Will the implementation of the change re-
quire the development and testing of new
tools?

• Requirements specifications techniques (e.g.,
flow diagram, state chart, pseudo code, control
diagram).
- Will the requirements specification method
be difficult to understand and translate into
code?

We have access to several sets of data from the
Space Shuttle of the following types:
A. Pre-release and post release failure data from the

Space Shuttle from 1983 to the present.
B. Risk factors for the Shuttle Three Engine Out Auto

Contingency and Single Global Positioning System
software. This software was released to NASA by
the developer on 10/18/95 and 3/5/97, respectively.

C. Metrics data for 1400 Shuttle modules, each with
26 metrics.

We will use the Shuttle data to test our hypothesis
about the ability of risk factors to discriminate between
levels of reliability and complexity, and will work with
the MDS to apply our findings. We will also attempt to
identify more quantitative risk factors than those given
above, based on structural measurements of the UML

specifications and designs that will be produced by the
MDS. This project provides a rare opportunity to work
with the software development team and testers to es-
tablish a measurement plan form the inception of a
project as opposed to the usual situation of having to
intervene in an on-going project. We plan to instrument
the software system for obtaining measurements
throughout the development and maintenance process.

CONCLUSION

This research is another in the series of our soft-
ware measurement projects that has included software
reliability modeling and prediction, metrics analysis,
risk analysis, and maintenance stability analysis.2, 3, 4, 12

We have been involved in the development and appli-
cation of software reliability models for many years.13, 14

Our models, as is the case in general in software reli-
ability, use failure data as the driver. This approach has
the advantage of using a metric that represents the dy-
namic behavior of the software. However, this data is
not available until the test phase. Predictions at this
phase are useful but it would be much more useful to
predict at an earlier phase – preferably during require-
ments analysis—when the cost of error correction is
relatively low. Thus, there is great interest in the soft-
ware reliability and metrics field in using static attrib-
utes of software in reliability modeling and prediction.

Our earlier work indicates that structural measure-
ments of a software system are strongly related to the
system’s fault content. The techniques to analyze this
information and produce the desired estimates are based
on well-understood multivariate analysis techniques,
and are appropriate performed by members of a soft-
ware quality assurance team. The structural measure-
ments required to make these estimates can be easily
collected as part of the development process, requiring
little or no additional effort on the part of the develop-
ment staff. Estimates of proportional fault content can
be made by using structural information alone. We are
currently working with the MDS project at JPL to im-
plement these measurement mechanisms.

The failure and fault information required to cali-
brate the models, on the other hand, may be more diffi-
cult to collect. Modern configuration management and
problem reporting systems can automate much of the
data collection process – failure reports can be associ-
ated with the files and modules that were changed in
response to a failure report. Although this will require
developers to provide that information on problem re-
port forms as part of problem identification and repair
activity, this does not represent any additional effort in
that developers are already required to provide this in-
formation.

8
American Institute of Aeronautics and Astronautics

Identification and counting of the faults, however,
is still largely a manual process, as is tracing them back
to their points of origin. Although this is work that
need not be performed by the development team, re-
sources do need to be allocated to the quality assurance
staff members that will perform this type of analysis.
Our experience indicates that for a project the size of
MDS, roughly one or two additional analysts would
have to be added to a development team several dozen
strong. As part of our future work, we hope to develop
automated techniques for assisting analysts in this area.

ACKNOWLEDGMENTS

The research described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute
of Technology. Portions of the work were sponsored
by the National Aeronautics and Space Administra-
tion’s IV&V Facility
.

REFERENCES

1 J. C. Munson and G. A. Hall, “Estimating Test
Effectiveness with Dynamic Complexity
Measurement,” Empirical Software Engineer-
ing Journal. Feb. 1997

2 J. Munson, A. Nikora, “Estimating Rates of
Fault Insertion and Test Effectiveness in Soft-
ware Systems”, proceedings of the Fourth
ISSAT International Conference on Quality
and Reliability in Design, Seattle, WA, August
12-14, 1998

3 A. Nikora, N. Schneidewind, J. Munson,
“IV&V Issues in Achieving High Reliability
and Safety in Critical Control System Soft-
ware,” JPL D-15740, final report, January 19,
1998
• Volume 1 – “Measuring and Evaluating

the Software Maintenance Process and
Metrics-Based Quality Control”

• Volume 2 – “Measuring Defect Insertion
Rates and Risk of Exposure to Residual
Defects in Evolving Software Systems”

• Volume 3 – “Appendices”
4 Norman F. Schneidewind, “Reliability Model-

ing for Safety Critical Software”, IEEE Trans-
actions on Reliability, March 1997

5 Norman F. Schneidewind, “Predicting Devia-
tions in Software Quality by Using Critical
Value Deviation Metrics, to be published in the
proceedings of the Tenth International Sympo-
sium on Software Reliability Engineering,
Boca Raton, FL, November 1-4, 1999.

6 A. Nikora, J. Munson, “Determining Fault In-
sertion Rates for Evolving Software Systems”,
proceedings of the Ninth International Sympo-
sium on Software Reliability Engineering,
Paderborn, Germany, November 4-7, 1998

7 B. W. Boehm, Software Engineering Econom-
ics, Prentice-Hall, Inc., 1981

8 M. E. Fagan, "Design and Code Inspections to
Reduce Errors in Program Development," IBM
Systems Journal, Volume 15, Number 3, pp
182-211, 1976

9 E. Mikk, Y. Lakhnech, and M. Siegel, “To-
wards Efficient Modelchecking Statecharts: A
Statecharts to Promela Compiler,” In 3rd Inter-
national SPIN Workshop, University of
Twente, April 97

10 G. Holzmann, “The Model Checker Spin,”
IEEE Trans. on Software Engineering, Vol. 23,
No. 5, May 1997, pp. 279-295

11 Alan Davis, Software Requirements: Analysis
and Specifications, Prentice-Hall, Englewood
Cliffs, NJ, 1990

12 Norman F. Schneidewind, “How to Evaluate
Legacy System Maintenance”, IEEE Software,
Vol. 15, No. 4, July/August 1998, pp. 34-42.
Also translated into Japanese and reprinted in:
Nikkei Computer Books, Nikkei Business
Publications, Inc., 2-1-1 Hirakawacho, Chi-
yoda-Ku, Tokyo 102 Japan, 1998, pp. 232-240

13 Norman F. Schneidewind, "Software Reliabil-
ity Model with Optimal Selection of Failure
Data", IEEE Transactions on Software Engi-
neering, Vol. 19, No. 11, November 1993, pp.
1095-1104

14 Norman F. Schneidewind and T. W. Keller,
“Application of Reliability Models to the
Space Shuttle”, IEEE Software, Vol. 9, No. 4,
July 1992 pp. 28-33

